
Best security
practices for
developer
productivity
Aug 2022

Summary of Best Practices

Introduction

Why developers use ngrok?

How ngrok secures remote access?

Security Best Practices for
Developer Productivity

Elect a tenant for enterprise usage

Add authentication to public-facing URLs

Secure webhook communications

Enable IP Policies

Enforce and restrict ngrok agents with ACLs

Track and block unauthorized tunnel activity

Add SSO and MFA to the admin UI

Conclusion

Learn more

3

4

4

5

6

8

9

11

12

13

14

15

16

16

2

Best security practices for developer productivity

Table of Contents

Summary of Best Practices

3

Best security practices for developer productivity

Best Practice Why Result

1: Elect a tenant for
enterprise usage

The use of a centralized
tenant helps with implementing
best practices consistently
and enables security
operations at scale

ngrok management
is centralized

IT and Security can
consolidate policies and
best practices in one place

2: Add
authentication to
public-facing URLs

Use your authentication
provider to secure endpoints
and publicly facing URLs.
Ensure that publicly exposed
tunnels have company-wide
authentication and 2FA/MFA.

Only authorized users
can see content served by
ngrok tunnels

Unauthorized requests are
blocked before even
reaching your network

3: Secure webhook
communications

If your teams use webhook
integrations, ensure that they
are using our Webhook
Signature Validation module.

Only authorized webhook
requests and providers can
reach your developer's code

Unauthorized webhook
calls are blocked before
even reaching your network

4: Enable IP
restrictions

Put IP policies on both the
agent and endpoints
(if applicable). Limit usage to
your corporate networks

Only authorized IP
origins can reach your
developer's code

Unauthorized IPs are blocked
before even reaching your
network

5: Restrict network
agents with ACLs

Set up Authtoken ACLs to
ensure the agents running on
developers' laptops are only
able to bind to specific,
preconfigured tunnels with the
right security policies

Tunnel security is
consistently applied for all
developers,
regardless of language,
framework, or architecture

6: Track and
block unauthorized
tunnel activity

Set up custom ingress (i.e.;
tunnels.company.com) to
identify ngrok usage from
your sanctioned ngrok
tenant. Firewall off all other
ngrok usage.

You can segment ngrok
usage within your networks

Unauthorized ngrok
clients are blocked from
creating tunnels

7: Add SSO and MFA
to the admin UI

Protect Dashboard Access
by layering Single Sign On
through your Identity provider.
Deploy ngrok’s RBAC to ensure
users have the right
level of permissions within
the Dashboard.

Only admins with strong
identity authentication can
access ngrok

Developers use ngrok to increase their productivity while building and
validating software in two ways:

● Exposing localhost apps to the internet for user
access and collaboration
In this use-case, developers expose localhost apps for public
access so other peers — i.e., product designers, product managers,
contractors, and users — can review and validate their work.

● Exposing local environments, APIs, and webhooks for SaaS
services and API clients

In this use-case, developers expose webhook listeners and APIs
running on localhost for integration tests with SaaS services — i.e.,
Slack & MS Team bots, Twilio webhook listeners, Zoom apps — and
API clients — i.e., mobile apps, desktop apps, B2B services.

By enabling public access to their localhost apps/APIs, developers
eliminate the repetitive tasks and time spent packaging and deploying
their apps while testing and tweaking their apps for production usage,
saving up to 90% time on each integrated test and review cycle:

Introduction
ngrok is the leading way to make apps available on the internet, trusted
by five million developers and recommended by category leaders —
such as Twilio, Github, Okta, Microsoft, Zoom, and Shopify — for enabling
remote access to apps and APIs running on localhost.

While developers use ngrok for productivity, organizations must ensure
security controls — such as single sign-on, MFA, network security, auditing,
and shadow IT policies — are consistently applied across all networks —
including ngrok communications.

This whitepaper describes the best practices and features organizations
can apply to consistently secure developers using ngrok while leveraging
their existing security investments.

4

Best security practices for developer productivity

Why do developers use ngrok?

code app packag
e deploy test ship

code app test ship

30m per test cycle
(per developer)

No centralized IT
and Security

Up to 90%
time savings

Centralized IT and
Security for Developers

BEFORE

AFTER

packag
e deploy

REPORT BUG

REPORT BUG

Best security practices for developer productivity

How does ngrok secure remote access?
While most developers begin and end their ngrok usage with simple
connectivity, ngrok makes it easy to secure your network traffic by
providing configurable modules for authentication, encryption,
and network policies:

5

Leveraging and combining edge components allows you to meet your
security requirements fast and without rearchitecting your services.

code app package deploy test ship

code app test ship

30m per test cycle
(per developer)

No centralized IT
and Security

Up to 90%
time savings

Centralized IT and
Security for Developers

BEFORE

AFTER

package deploy

REPORT BUG

REPORT BUG

Best security practices for developer productivity

Many organizations allow developers to use ngrok at an individual level.
In this deployment model, each developer owns and manages their
ngrok tenant and decides which ngrok policies to use:

ngrok tenant 1 ngrok tenant 2 ngrok tenant 3

ngrok tenant 4 ngrok tenant 5 ngrok tenant 6

ngrok tenant 7 ngrok tenant 8 ngrok tenant 9

ngrok tenant 10 ngrok tenant 11 ngrok tenant 12
…

Fig 1. ngrok delivers end-to-end security within the edge traffic without rearchitecting your services

This leads to three security challenges:

1. Inconsistent security policies
Each developer applies ngrok security based on their own needs
and discretion, making security controls inconsistent.

2. Independent levels of security configuration
Developers don't have access and bandwidth to appropriately
leverage your company's security investments — such as MFA, SSO,
and SIEM systems.

3. Invisible to oversight and control
Security teams have multiple tenants to monitor and secure to
keep developers productive and safe.

Security Best Practices for
Developer Productivity

6

7

By following the best practices, organizations manage ngrok in a single
tenant, leveraging their security stack and the security team's expertise
while keeping developers happy and productive:

ngrok tenant

All developers

1.
Define tenant
for enterprise usage

3.
Secure webhook
communications

2.
Add Authentication
to public-facing URLs

4.
Enable
IP Policies

5.
Restrict agents
with ACLs

7.
Add SSO and MFA
to the Admin UI

6.
Track and block unauthorized
tunnel activity

Best security practices for developer productivity

1: Elect a tenant for enterprise usage
To implement security best practices consistently and enable security
operations at scale, we recommend using a unified tenant for the
enterprise, with a limited number of administrators.

The process of electing and setting up a single tenant involves the
following steps:

1. Subscribe to the enterprise tenant and sign up as an administrator

2. Create administrative accounts for your security and
management teams

3. Invite developers to use ngrok with limited access

Developers will receive an invitation in their emails to the unified tenant.
On sign-in, developers can enter the setup command to reassociate
their ngrok agent with your enterprise tenant without reinstalling
the ngrok agent:

8

The process of onboarding ngrok users on the new tenant

Best security practices for developer productivity

2: Add authentication to public-facing URLs
With OAuth and SAML SSO, you can leverage your company's identity
solution (SSO/MFA) or social providers to restrict access to tunnels. ngrok
enforces the authentication at the edge and blocks unauthorized calls
before they reach your developer's apps, providing authentication,
authorization, and auditing events while preventing reconnaissance
campaigns and DDoS attacks to your developer apps.

ngrok lets you configure authentication in different ways:

Enterprise Authentication and MFA

Use any SAML or OIDC-compliant provider — such as Okta, Microsoft
Azure AD or AD FS, Ping, and Auth0 — to control access to tunneled URLs.
This integration leverages the strong authentication mechanisms and
policies defined in your identity solution, such as Okta Verify,
ThreatInsights, and FastPass, Azure Conditional Access, PingID's MFA,
WebAuthn, and Yubikeys.

9

Using Okta authentication to restrict access to ngrok tunnels

Best security practices for developer productivity

10

Using GitHub for authentication

Social Authentication

In addition to enterprise identity, you can use social providers — such as
Github and Google — for authentication. Social identity providers deliver
a lightweight option for securing contractors or temp workers without
onboarding them in your enterprise SSO solution:

To ensure only specific individuals or organizations are accessing your
tunnels, restrict the social authentication based on the user email
address or email domain:

Restricting GitHub auth to john@contractor.com and users with the
email ending in @acme-services.com and @acme-consulting.com

10

Best security practices for developer productivity

mailto:john@contractor.com

3: Secure webhook communications
By using webhook verification, you can ensure only legitimate webhook
calls are sent to your tunnels. The setup is available from the ngrok CLI —
using the --verify-webhook argument — admin dashboard, and
terraform provider.

Webhook Verification

11

Configuring Webhook verification for PagerDuty

With webhook verification, ngrok authenticates webhook request
authenticity and message integrity at the edge. As a result, unauthorized
calls are blocked before they even reach your developer's apps,
providing authentication and integrity while preventing reconnaissance
campaigns and DDoS attacks. To learn more, check our webhook
verification docs and documentation of providers such as Github,
Okta, and Twilio.

Best security practices for developer productivity

https://ngrok.com/docs/cloud-edge#webhook-verification
https://ngrok.com/docs/cloud-edge#webhook-verification
https://ngrok.com/docs/integrations/webhooks/github
https://ngrok.com/docs/integrations/webhooks/okta
https://ngrok.com/docs/integrations/webhooks/twilio

4: Enable IP Policies
IP Policies allow companies to restrict access to ngrok based on IPs on all
ngrok network communications, including:

● Public access to your developer apps

● The ngrok Dashboard (Admin UI)

● The ngrok APIs (includes the ngrok REST APIs, Admin SDKs, and
Terraform Provider)

● Where ngrok agents are launched (includes the ngrok agent and
docker container)

An ngrok tenant can have multiple policies set for different
communications. Each policy may contain multiple deny and allow rules
to specific IPv4 and IPv6 addresses:

12

Restricting access to approved IPs

Best security practices for developer productivity

13

Combining IP Policies and other security controls

IP Policies can be combined with other security controls — such as
network, identity, authentication, and device security — for a
multi-layered security approach. Examples:

● Combining IP Policies and SSO/MFA helps ensure that only
authenticated users on approved networks can access
ngrok tunnels.

Combining IP Policies and webhook verification helps ensure that
only webhook calls from expected IPs — i.e., Brex, Castle, and
Zoom, authenticated and with message integrity can reach your
developer environment.

13

5. Enforce and restrict ngrok agents with ACLs
After implementing access control, webhook security, and IP restrictions,
companies must ensure developers launch only tunnels that adhere to
security-defined policies. This enforcement can be achieved by using
tunnel authtokens with ACLs.

Tunnel authtokens are the secret key used by ngrok agents to connect to
the edge and enable remote access. By using ACLs at the authtoken
level, security administrators can make sure tunnels are launched only if
bound to specific policies, delivering consistent security:

Using ACLs to restrict access to specific edges configurations and domains

Best security practices for developer productivity

https://developer.brex.com/docs/webhooks/#ip-whitelisting
https://docs.castle.io/docs/subscribe-to-webhooks#allowlisting-castle-ips
https://marketplace.zoom.us/docs/api-reference/webhook-reference/#ip-addresses

6: Track and block unauthorized tunnel activity
To ensure ngrok tunnels leverage the right security policies, many
organizations want to identify and block the use of independent ngrok
accounts — using free plans and without the enterprise security controls
— inside their networks. Organizations can accomplish that by defining
custom ingress domains within ngrok while blocking free ngrok traffic.

With custom ingress domains, ngrok customers can define their own URLs
for ngrok tunnel traffic within their networks — i.e.,
tunnels-dev.mycompany.com. This definition ensures that sanctioned
ngrok traffic uses a dedicated URL, known and approved by IT. Any
non-sanctioned traffic on tunnel.ngrok.com can be blocked by the
firewall at the URL level, without causing outages on approved tunnels:

14

Defining a custom ingress: Picking an address

Defining a custom ingress: Configurations for your DNS server

Best security practices for developer productivity

7: Add SSO and MFA to the admin UI
With Dashboard SSO, you can restrict access to the ngrok administrative
interface only for users authenticated in your identity provider — such as
Okta, Azure AD, Ping, AD FS, and Auth0. The ngrok dashboard SSO works
with any SAML provider, and can be used with your identity provider MFA
— i.e., Windows Hello, Okta Verify, FIDO, and PingID — to ensure two-factor
authentication (2FA) in compliance with your security requirements.

15

Best security practices for developer productivity

Conclusion
Developers use ngrok to increase productivity, exposing localhost
apps/APIs for people, SaaS services, and API clients for collaboration and
testing during development.

By following the best practices in this document, you can secure ngrok
usage by leveraging your security stack and team's expertise, while
keeping developers happy and productive.

16

To learn more about ngrok’s capabilities
https://ngrok.com/product

To learn more about ngrok’s security
https://trust.ngrok.com

ngrok tenant

All developers

1.
Define tenant
for enterprise usage

3.
Secure webhook
communications

2.
Add Authentication
to public-facing URLs

4.
Enable
IP Policies

5.
Restrict agents
with ACLs

7.
Add SSO and MFA
to the Admin UI

6.
Track and block unauthorized
tunnel activity

Best security practices for developer productivity

https://ngrok.com/product
https://trust.ngrok.com

